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Two first-principles simulation techniques, path integral Monte Carlo �PIMC� and density functional mo-
lecular dynamics �DFT-MD�, are applied to study hot, dense helium in the density-temperature range of
0.387–5.35 g cm−3 and 500 K–1.28�108 K. One coherent equation of state is derived by combining
DFT-MD data at lower temperatures with PIMC results at higher temperatures. Good agreement between both
techniques is found in an intermediate-temperature range. For the highest temperatures, the PIMC results
converge to the Debye-Hückel limiting law. In order to derive the entropy, a thermodynamically consistent
free-energy fit is used that reproduces the internal energies and pressure derived from the first-principles
simulations. The equation of state is presented in the form of a table as well as a fit and is compared with
different free-energy models. Pair-correlation functions and the electronic density of states are discussed.
Shock Hugoniot curves are compared with recent laser shock-wave experiments.
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I. INTRODUCTION

After hydrogen, helium is the most common element in
the universe. While it rarely occurs in pure form in nature, it
is an endmember of hydrogen-helium mixtures �HHMs� that
are the prevalent component in solar and extrasolar giant gas
planets. The characterization of helium’s properties at ex-
treme temperature and pressure conditions is therefore im-
portant for the study of planetary interiors and especially
relevant for answering the question of whether HHMs phase-
separate in giant planet interiors.1,2 In most planetary models,
the equation of state �EOS� of HHM was inferred from the
linear mixing approximation at constant pressure and tem-
perature using the EOSs of pure hydrogen and helium. The
latter is the central topic of this paper.

Hydrogen and helium share some common properties.
Both are very light and exhibit rich quantum properties at
low temperature. More importantly for this paper, the helium
atom and the deuterium molecule have similar masses and
both have two elemental excitation mechanisms that deter-
mine their behavior at high temperature. The helium atom
has two ionization stages, while deuterium molecules can
dissociate and the resulting atoms can be ionized. However,
helium is without question simpler to characterize at high
pressure. The crystal structure is hexagonal closed packed
under most �P ,T� conditions,3,4 while in solid hydrogen, dif-
ferent degrees of molecular rotational ordering lead to sev-
eral phases that deviate from the hcp structure. Hydrogen is
expected to turn metallic at a few hundreds of gigapascals,
while a much larger band gap must be closed in helium,
which is predicted to occur at 11 200 GPa �Refs. 5 and 6�
according to density functional theory �DFT� and at
25 700 GPa according to recent quantum Monte Carlo
calculations.7 The difference arises because standard DFT
methods underestimate the band gap by 4 eV in dense solid
helium.

Given the relative simplicity of helium’s high-pressure
properties, one expects that there would be less of a contro-

versy in the EOS than for hydrogen. This makes helium a
good material to test novel experimental and theoretical ap-
proaches. For hydrogen, the results of first laser shock ex-
periments that reached megabar pressures had predicted that
the material would be highly compressible under shock con-
ditions and reach densities six times higher than the initial
state.8,9 Later experiments10–13 showed reduced compression
ratios close to 4.3, which were in good agreement with first-
principles calculations.14,15 Good agreement between gas gun
experiments by Holmes et al.16 and first-principles simula-
tions has also been demonstrated.17,18 The same is true for
helium, where very good agreement between early gas gun
experiments by Nellis et al.19 and first-principles simulations
has been found.20

Recently the first laser shock experiments were performed
on precompressed helium samples.21 The measurements con-
firmed the theoretically predicted trend20 that the shock com-
pression ratio is reduced with increasing precompression.
However, there is a discrepancy in the magnitude of the com-
pression. Shock measurements21 without precompression
showed compression ratios of about 6, while first-principles
simulation20 predicted only 5.24�4�. The discrepancy be-
tween theoretical and experimental predictions is reduced for
higher precompressions. For samples that were precom-
pressed to 3.4-fold, the ambient density, theory, and experi-
ment are in agreement.

The properties of fluid helium change from hard-sphere
liquid at low pressure and temperature to ultimately a two-
component plasma, after ionization has occurred at high
pressure and temperature. The associated insulator-to-metal
transition has been the topic of three recent theoretical stud-
ies that all relied on DFT methods. Kietzmann et al.22 stud-
ied the rise in electrical conductivity using the Kubo-
Greenwood formula and compared with results of shock-
wave experiments by Ternovoi et al.23 Kowalski et al.6

studied dense helium in order to characterize the atmosphere
of white dwarfs. This paper went beyond the generalized
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gradient approximation by considering hybrid functionals.
Stixrude and Jeanloz24 studied the band-gap closure in the
dense fluid helium over a wide range of densities including
conditions of giant planet interiors. Two recent studies of
Jupiter’s interior,25,26 to a different extent, relied on a helium
EOS derived from DFT-MD.

This paper provides the EOS for fluid helium over a wide
range of temperatures �500 K–1.28�108 K� and densities
�0.387–5.35 g cm−3 corresponding to a Wigner-Seitz radius
interval of rs=2.4–1.0, where 4

3�rs
3=V /Ne� by combining

two first-principles simulation methods, path integral Monte
Carlo �PIMC� at higher temperatures and density functional
molecular dynamics �DFT-MD� at lower temperatures. PIMC
is very efficient at high temperature but becomes computa-
tionally more demanding with decreasing temperature be-
cause the length of the path scales like 1 /T. DFT is a very
efficient ground-state method, but with increasing tempera-
ture more and more unoccupied orbitals need to be included,
which eventually adds considerably to the computational
cost.

The temperature range of the PIMC simulations was sig-
nificantly extended compared to our earlier work20 that fo-
cused exclusively on shock properties alone. Here, the region
of validity of both first-principles methods is analyzed and
good agreement for EOS at intermediate temperatures is
demonstrated. The PIMC calculations are extended to much
higher temperatures until good agreement with the Debye-
Hückel limiting law is found. In the density interval under
consideration, the entire EOS of nonrelativistic fluid helium
has been mapped out from first principles. All EOS data are
combined into one thermodynamically consistent fit for the
free energy, and the entropy is derived. The structure of the
fluid is analyzed using pair-correlation functions and, finally,
additional results for shock Hugoniot curves are presented.

II. METHODS

Path integral Monte Carlo27 is the most appropriate and
efficient first-principles simulation technique for a quantum
system at finite temperature. Electrons and nuclei are treated
equally as paths, although the zero-point motion of the nuclei
as well as exchange effects is negligible for the temperatures
under consideration. The Coulomb interaction between elec-
trons and nuclei is introduced using pair density matrices that
we derived using the eigenstates of the two-body Coulomb
problem.28 The periodic images were treated using an opti-
mized Ewald breakup29 that we applied to the pair action.30

PIMC includes all correlation effects, which, for example,
leads to an exact treatment of the isolated helium atom.

PIMC simulations with more two electrons in a dense
system suffer from a fermion sign problem, which is the
result of the near complete cancellation of positive and nega-
tive contributions to the many-body density matrix in degen-
erate fermionic systems. In ground-state quantum Monte
Carlo methods,31 this problem is solved by introducing the
fixed node approximation where walkers are prohibited from
entering negative regions of a trial wave function, �T�R�
�0. Most often �T is represented by a Slater determinant

filled with single-particle orbitals derived with the Hartree-
Fock method or from density functional theory. Recent stud-
ies found significant improvements by considering backflow
wave functions32,33 and Pfaffians.34

The fixed node approximation in fermionic PIMC �Refs.
35 and 36� is more complicated because one needs an ana-
lytical approximation not only to the ground-state wave
function but to the many-body density matrix �T�R ,R� ;��
over a range of temperatures T=1 /�,

�F�R,R�;�� =
1

N!�P �− 1�P �
R→PR�

�T�R,Rt;t��0

dRt e−S�Rt�. �1�

The action S�Rt� determines the weight of every path. The
nodal restriction �T�R ,Rt ; t��0 is enforced at every point on
the path R→PR� and guarantees that only positive contri-
butions from the sum over permutations P enter when diag-
onal elements of density-matrix elements, �F�R ,R�=R ;��,
are computed. In general observables are derived from

�Ô� =
� dR� dR��R	Ô	R���F�R�,R;��

� dR�F�R,R;��
. �2�

However for the internal, kinetic, and potential energies as
well as for the pressure and pair-correlation functions, but
not for the momentum distribution, diagonal elements are
sufficient,27 which means all PIMC simulations for this study
were performed with closed paths R→PR.

The most common approximation to the trial density ma-
trix is a Slater determinant of single-particle density matrices

�T�R,R�;�� = 
��1��r1,r1�;�� ¯ ��1��rN,r1�;��
¯ ¯ ¯

��1��r1,rN� ;�� ¯ ��1��rN,rN� ;��

 . �3�

The free-particle nodal structure is obtained by entering the
density matrices of noninteracting particles,

�0
�1��r,r�;�� = �4����−d/2exp�−

�r − r��2

4��
� , �4�

with �=	2 /2m, which becomes exact in the limit of high
temperature. The variational density-matrix �VDM�
approach37 is currently the only available technique that goes
beyond free-particle nodal approximation by including inter-
action effects into the PIMC nodal structure. This approach
is more accurate but also more demanding computationally.
Most results in this paper will be derived with free-particle
nodes but some comparisons with VDM nodes will be pre-
sented.
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The DFT-MD simulations were performed either with the
CPMD code38 using local Troullier-Martins norm-conserving
pseudopotentials39 or with the Vienna ab initio simulation
package40 using the projector augmented-wave method.41

Exchange-correlation effects were described by the Perdew-
Burke-Ernzerhof generalized gradient approximation.42 The
electronic wave functions were expanded in a plane-wave
basis with energy cutoff of 30–50 hartree. Most simulations
were performed with N=64 using 
-point sampling of the
Brillouin zone. An analysis of finite-size effect is presented
in Sec. III.

The nuclei were propagated using Born-Oppenheimer
molecular dynamics with forces derived from either the elec-
tronic ground state or by including a thermal population of
unoccupied electronic orbitals43 when they make non-
neglible contributions to the energy or pressure in thermody-
namic equilibrium at elevated temperatures. By comparing
with PIMC, it will be demonstrated that the thermal popula-
tion of unoccupied Kohn-Sham orbitals leads to an accurate
description of the EOS at high temperature and density. This
extends the applicability range of DFT, which was developed
as a ground-state electronic structure method.

III. EQUATION OF STATE

An analysis of finite-size dependence of the EOS results
is important since all simulations are performed with a finite
number of particles under periodic boundary conditions. Fig-
ure 1 gives two examples for the finite-size analysis that we
have performed at various temperature and density condi-
tions. At 10 000 K and rs=2.4, helium can be characterized
as a hard-sphere fluid. The artificial periodicity of the nuclei
dominates the finite-size errors. Simulations with N=64 at-
oms are sufficiently accurate for the purpose of this study.
The DFT-MD results also agree surprisingly well with clas-
sical Monte Carlo calculation using the Aziz pair potential,44

which explains why both methods give fairly similar Hugo-
niot curves as long as thermal electronic excitations are not
important.20

The upper panel of Fig. 1 shows PIMC results for
125 000 K, where a substantial part of the pressure comes
from the thermally excited electrons. They are still coupled
to the motion of the nuclei, which leads to effective screen-
ing. In consequence, the finite-size dependence of the pres-
sure is reduced significantly, and a simulation with N=16
atoms exhibits a finite-size error of only 1% compared with
3% at lower temperature. This is the reason why PIMC simu-
lations with 16 atoms already give a fairly accurate shock
Hugoniot curve.20 However, most PIMC results reported in
Table I were obtained with 32 atoms and some with 57 at-
oms. Already 32 atoms lead to well-converged pressures un-
less one is interested in very high temperatures, above
107 K, where all atoms are ionized and the coupling is very
weak. Although the total pressure is dominated by the kinetic
term, the accurate determination of the small contribution
from the interactions shows an increased finite-size depen-
dence that requires simulation with 57 atoms in some cases.

In general, the weak-coupling limit is difficult to study with
finite-size simulations.45,46 Also at very high density, beyond
the range considered here, electrons approach the limit of an
ideal Fermi gas and form a rigid background. The remaining
Coulombic subsystem of ions is expected to require simula-
tions with several hundreds of particles.47 In this regard, the
electronic screening makes our simulations affordable.

Figure 2 compares the pressures obtained from PIMC and
DFT-MD simulations for several densities. At rs=1.86, ther-
mal population of unoccupied electronic states becomes im-
portant above 20 000 K. Both first-principles methods are in
very good agreement, which is the foundation for the coher-
ent EOS reported in this paper. Reasonably good agreement
between PIMC and DFT-MD was reported for hydrogen
earlier.48 Figure 2 is a stringent test because it compares only
the pressure contributions that result from the particle inter-
actions. When one removes the ideal-gas contributions P0,
one has a bit of a choice for the corresponding noninteracting
system. At very high temperature, one wants to compare
with an ideal Fermi gas of electrons and nuclei. At low tem-
perature, however, comparing with a gas of noninteracting
atoms is preferred. To combine these to limiting cases, we
construct a simple chemical model that includes neutral at-
oms and He+ and He2+ ions as well as free electrons. The
ionization state is derived from the Saha equilibrium using
the following binding energies: EHe=−2.9037 hartree and
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FIG. 1. �Color online� The upper panel shows the finite-size
dependence of the pressure as function of the number of atoms,
N, as predicted from PIMC simulations with free-particle nodes at
T=125 000 K and rs=1.86. The lower panel compares the finite-
size dependences of DFT-MD simulations and classical Monte
Carlo calculations using the Aziz pair potential at T=10 000 K and
rs=2.4.
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TABLE I. EOS table with pressures and internal and free ener-
gies per electron. The numbers in parentheses indicate the statistical
uncertainties of the DFT-MD and PIMC simulations for the corre-
sponding number of trailing digits.

rs

T
�K�

P
�GPa�

E /Ne

�hartree�
F /Ne

�hartree�

2.4a 500 1.420�10� −1.449873�7� −1.4554

2.4a 1000 2.045�14� −1.448401�10� −1.46135

2.4a 3000 4.69�3� −1.44273�3� −1.49126

2.4a 5000 6.98�4� −1.43727�3� −1.52534

2.4a 10000 12.49�4� −1.42395�5� −1.61873

2.4a 20000 22.19�8� −1.39427�12� −1.82386

2.4a 40000 43.37�11� −1.2997�2� −2.28643

2.4a 60000 68.27�10� −1.1748�2� −2.80627

2.4a 80000 96.93�12� −1.02525�7� −3.37236

2.4b 125000 172.3�6� −0.6667�17� −4.77369

2.4b 250000 445.7�6� 0.477�2� −9.31702

2.4b 333333 651.4�9� 1.237�3� −12.6707

2.4b 500000 1067.7�1.0� 2.634�3� −19.922

2.4b 571428 1249.9�9� 3.216�3� −23.1952

2.4b 666667 1484.2�5� 3.9507�16� −27.6612

2.4b 800000 1815.5�1.2� 4.972�4� −34.0708

2.4b 1�106 2308.4�7� 6.470�2� −43.9954

2.4b 2�106 4745.2�8� 13.754�2� −97.4249

2.4b 4�106 9587.6�1.2� 28.102�4� −213.949

2.4c 8�106 19253 56.72 −466.803

2.4c 16�106 38577 113.80 −1013.36

2.4c 32�106 77205 227.87 −2184.48

2.4c 64�106 154445 455.92 −4683.43

2.4c 128�106 308916 911.97 −10002.6

2.4c 256�106 617849 1824.04 −21267.5

2.4c 512�106 1235711 3648.14 −45052.4

2.4c 1024�106 2471430 7296.32 −95193.5

2.4c 2048�106 4942866 14592.67 −200489

2.2a 500 2.74�2� −1.449495�13� −1.45451

2.2a 1000 3.77�3� −1.44787�2� −1.4601

2.2a 3000 7.59�3� −1.44186�2� −1.48855

2.2a 5000 10.81�6� −1.43615�3� −1.5214

2.2a 10000 18.23�7� −1.42256�5� −1.61205

2.2a 20000 31.39�7� −1.39256�9� −1.812

2.2a 40000 59.54�13� −1.30036�19� −2.2635

2.2a 60000 92.10�11� −1.17937�16� −2.77064

2.2a 80000 129.52�10� −1.03399�12� −3.32222

2.2b 125000 223.9�7� −0.6962�16� −4.68439

2.2b 250000 569.6�7� 0.3971�16� −9.08923

2.2b 500000 1371.3�6� 2.5403�14� −19.3777

2.2b 1�106 2981.1�7� 6.3896�17� −42.807

2.2b 2�106 6148.3�8� 13.694�2� −95

2.2b 4�106 12438.6�1.7� 28.059�4� −209.039

2.2c 8�106 24982 56.67 −456.924

2.2c 16�106 50075 113.77 −993.605

TABLE I. �Continued.�

rs

T
�K�

P
�GPa�

E /Ne

�hartree�
F /Ne

�hartree�

2.2c 32�106 100227 227.85 −2144.93

2.2c 64�106 200508 455.91 −4604.15

2.2c 128�106 401053 911.96 −9843.99

2.2c 256�106 802134 1824.03 −20951.2

2.2c 512�106 1604287 3648.13 −44420.5

2.2c 1024�106 3208587 7296.31 −93928.4

2.2c 2048�106 6417184 14592.66 −197960

2a 500 6.101�13� −1.448584�6� −1.45297

2a 1000 7.59�2� −1.446835�11� −1.45806

2a 3000 13.57�5� −1.44022�3� −1.48466

2a 5000 18.07�7� −1.43433�4� −1.51606

2a 10000 28.62�11� −1.42013�8� −1.60363

2a 20000 47.02�12� −1.38968�11� −1.79771

2a 40000 84.72�12� −1.30039�15� −2.23673

2a 60000 128.66�14� −1.18357�12� −2.72986

2a 80000 178.84�19� −1.0433�2� −3.26574

2b 125000 297.4�7� −0.7291�12� −4.58614

2b 250000 745.9�7� 0.3112�13� −8.84403

2b 500000 1800.9�8� 2.4269�14� −18.7895

2b 1�106 3941.2�1.0� 6.2898�17� −41.5111

2b 2�106 8163.1�1.5� 13.621�3� −92.3417

2b 4�106 16544�2� 28.009�4� −203.653

2c 8�106 33228 56.61 −446.089

2c 16�106 66633 113.73 −971.926

2c 32�106 133390 227.82 −2101.53

2c 64�106 266868 455.88 −4517.11

2c 128�106 533797 911.95 −9669.7

2c 256�106 1067636 1824.02 −20604.1

2c 512�106 2135303 3648.12 −43727.2

2c 1024�106 4270628 7296.31 −92540.1

2c 2048�106 8541271 14592.66 −195186

1.86a 1000 13.55�3� −1.445347�12� −1.45574

1.86a 3000 21.50�8� −1.43837�4� −1.48081

1.86a 5000 28.04�9� −1.43196�4� −1.51097

1.86a 10000 41.40�10� −1.41740�6� −1.59608

1.86a 20000 65.16�13� −1.38638�9� −1.7856

1.86a 40000 112.98�18� −1.29844�18� −2.2149

1.86a 60000 167.7�2� −1.1854�2� −2.69739

1.86a 80000 229.42�15� −1.04980�12� −3.22147

1.86d 125000 378�2� −0.743�3� −4.51072

1.86b 250000 918.6�1.3� 0.2491�18� −8.65932

1.86b 333333 1340.7�1.3� 0.9607�18� −11.7193

1.86b 500000 2214.5�1.7� 2.336�2� −18.3468

1.86b 571428 2595�2� 2.910�3� −21.3458

1.86b 666667 3104�3� 3.661�4� −25.4472

1.86b 800000 3818�3� 4.699�4� −31.3521

1.86b 1�106 4876.7�1.5� 6.212�2� −40.5306

1.86b 2�106 10128�3� 13.559�3� −90.3193
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TABLE I. �Continued.�

rs

T
�K�

P
�GPa�

E /Ne

�hartree�
F /Ne

�hartree�

1.86b 4�106 20550�5� 27.959�7� −199.554

1.86b 8�106 41316�7� 56.543�9� −437.845

1.86c 16�106 82822 113.69 −955.409

1.86c 32�106 165822 227.79 −2068.45

1.86c 64�106 331768 455.87 −4450.87

1.86c 128�106 663625 911.93 −9537.1

1.86c 256�106 1327312 1824.01 −20338.8

1.86c 512�106 2654668 3648.12 −43196.4

1.86c 1024�106 5309366 7296.30 −91478.5

1.86c 2048�106 10618754 14592.66 −193062

1.75a 1000 22.14�4� −1.443419�13� −1.45302

1.75a 3000 32.35�11� −1.43604�4� −1.47673

1.75a 5000 40.66�13� −1.42933�5� −1.50576

1.75a 10000 57.60�13� −1.41415�6� −1.58867

1.75a 20000 87.06�17� −1.38263�11� −1.77422

1.75a 40000 144.6�3� −1.2961�3� −2.19531

1.75a 60000 210.43�19� −1.18602�16� −2.66885

1.75a 80000 284.6�3� −1.05398�16� −3.18308

1.75b 125000 454.4�1.0� −0.7647�12� −4.44653

1.75b 250000 1098.0�1.1� 0.2015�13� −8.50508

1.75b 500000 2639.1�1.6� 2.2626�17� −17.9781

1.75b 1�106 5831.7�2.0� 6.143�2� −39.7109

1.75b 2�106 12139�2� 13.503�3� −88.6228

1.75b 4�106 24656�3� 27.915�4� −196.115

1.75b 8�106 49587�8� 56.501�10� −430.926

1.75c 16�106 99420 113.65 −941.531

1.75c 32�106 199083 227.76 −2040.64

1.75c 64�106 398335 455.85 −4395.24

1.75c 128�106 796789 911.92 −9425.79

1.75c 256�106 1593662 1824.00 −20115.4

1.75c 512�106 3187384 3648.11 −42749

1.75c 1024�106 6374809 7296.30 −90584.7

1.75c 2048�106 12749648 14592.65 −191274

1.5a 1000 73.92�10� −1.43440�3� −1.44135

1.5a 2000 84.42�12� −1.42977�4� −1.45018

1.5a 3000 92.66�12� −1.42576�4� −1.46128

1.5a 5000 107.7�2� −1.41813�7� −1.48725

1.5a 10000 137.9�3� −1.40115�11� −1.56358

1.5a 20000 189.4�4� −1.36731�18� −1.73814

1.5a 40000 285.0�4� −1.2819�2� −2.13878

1.5a 60000 387.4�4� −1.1802�2� −2.58963

1.5a 80000 505.3�3� −1.05690�13� −3.07884

1.5b 125000 770�2� −0.7880�16� −4.27821

1.5b 250000 1737.1�1.6� 0.0907�12� −8.11696

1.5b 500000 4114.7�1.6� 2.0709�12� −17.0558

1.5b 1�106 9147.6�1.6� 5.9425�12� −37.6523

1.5b 2�106 19175�2� 13.3390�15� −84.3488

1.5b 4�106 39062�5� 27.782�4� −187.433

TABLE I. �Continued.�

rs

T
�K�

P
�GPa�

E /Ne

�hartree�
F /Ne

�hartree�

1.5b 8�106 78690�10� 56.411�8� −413.442

1.5d 16�106 157860�7� 113.544�5� −906.451

1.5c 32�106 316058 227.68 −1970.31

1.5c 64�106 632486 455.79 −4254.46

1.5c 128�106 1265232 911.88 −9143.99

1.5c 256�106 2530649 1823.97 −19550.3

1.5c 512�106 5061428 3648.09 −41618.1

1.5c 1024�106 10122947 7296.28 −88324.9

1.5c 2048�106 20245959 14592.64 −186751

1.25a 3000 331.6�3� −1.39652�6� −1.42554

1.25a 5000 360.1�5� −1.38761�12� −1.44742

1.25a 10000 418.6�4� −1.36798�8� −1.51449

1.25a 20000 515.4�8� −1.3306�3� −1.67468

1.25a 40000 683.9�5� −1.24615�18� −2.05136

1.25a 60000 865.2�7� −1.1504�2� −2.47506

1.25a 80000 1063.2�1.0� −1.0378�3� −2.93438

1.25a 125000 1565.4�1.5� −0.7817�4� −4.05965

1.25b 250000 3074�3� −0.0069�11� −7.65192

1.25b 500000 6999�4� 1.8502�15� −15.9783

1.25b 1�106 15578�3� 5.6796�11� −35.2469

1.25b 2�106 32897�7� 13.107�3� −79.3259

1.25b 4�106 67243�80� 27.58�3� −177.186

1.25b 8�106 135808�19� 56.263�8� −392.772

1.25b 16�106 272614�30� 113.381�13� −864.979

1.25c 32�106 545908 227.54 −1887.16

1.25c 64�106 1092767 455.69 −4087.74

1.25c 128�106 2186203 911.81 −8810.14

1.25c 256�106 4372877 1823.92 −18883.5

1.25c 512�106 8746088 3648.06 −40286

1.25c 1024�106 17492411 7296.26 −85659.8

1.25c 2048�106 34984988 14592.63 −181419

1a 5000 1560.1�5� −1.29739�8� −1.34504

1a 10000 1681.8�7� −1.27401�12� −1.40096

1a 20000 1878.6�1.0� −1.2313�2� −1.5439

1a 40000 2217.0�1.8� −1.1449�3� −1.88916

1a 62500 2608.7�1.8� −1.0456�3� −2.33028

1a 80000 2941�2� −0.9554�4� −2.7022

1a 125000 3890�2� −0.7276�4� −3.73996

1b 250000 6640�6� −0.0380�12� −7.04803

1b 333333 8780�6� 0.4717�12� −9.46272

1b 500000 13687�5� 1.6229�11� −14.6687

1b 571428 15920�5� 2.1410�11� −17.0286

1b 666667 18969�5� 2.8429�11� −20.2721

1b 800000 23334�5� 3.8385�12� −24.9776

1b 1�106 29972�5� 5.3367�12� −32.3609

1b 2�106 63676�11� 12.775�2� −73.2177

1b 4�106 130941�12� 27.326�3� −164.669

1b 8�106 264847�50� 56.052�10� −367.49
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EHe+ =−2 hartree. Besides the binding energies, no other in-
teractions are considered.

This approach smoothly connects the low- and high-
temperature limits. When we refer to excess pressures and
internal energies below, we mean the difference with this
ideal chemical model. For the correct interpretation of the
presented graphs, it should be pointed out that the pressures
and energies of the ideal model depend on the Saha ioniza-
tion equilibrium. If the ideal system exhibits a higher degree
of ionization than the simulation results, then this alone can
lead to negative excess pressures and energies, which one
would normally attribute exclusively to the interaction of
free electrons and ions. This fact is relevant for the correct
interpretation of Fig. 3, where even the DFT-MD results
without thermally excited electrons exhibit a negative excess
internal energy at 80 000 K.

Figure 3 exhibits the missing correlation energy in DFT
GGA, which underestimates the binding energy of the atom
by �E0=36 mhartree compared to the exact nonrelativistic
ground-state energy of −2.9037 hartree.49–51 This is the main

reason for the deviation of 22 mhartree per electron from the
ideal plasma model at 1000 K, the ideal plasma model that
was constructed using the exact ground-state energy. The re-
mainder of the discrepancy, 4 mhartree per electron, is due to
the change in the internal energy associated to the compres-
sion to a density of rs=1.86 and to the fact that the compari-
son is made for 1000 K.

To correct for missing correlation energy, we applied a
uniform correction of −�E0 to all DFT results discussed
later. We may assume that the correction to DFT depends
only weakly on temperature and density. Determining its pre-
cise amount more accurately is difficult and goes beyond the
scope of this paper.

Despite this DFT insufficiency, one finds reasonably good
agreement in the internal energies reported by PIMC and
DFT-MD. Figure 3 shows that both methods report very
similar increases in the energy resulting from thermal popu-
lation of unoccupied electronic states, which is the basis for
constructing one EOS table.

In order to explore the agreement between PIMC and
DFT-MD in more detail, we resort to pressure calculations
for a single configuration of nuclei that we have obtained
from DFT-MD with 57 atoms at 80 000 K. The nuclear
coordinates of the rs=1.86 snapshot are given in Table II.
For this fixed configuration of nuclei, we now compare the

TABLE I. �Continued.�

rs

T
�K�

P
�GPa�

E /Ne

�hartree�
F /Ne

�hartree�

1d 16�106 532209�20� 113.270�5� −814.18

1d 32�106 1066140�60� 227.350�14� −1785.39

1c 64�106 2133644 455.50 −3884.05

1c 128�106 4269457 911.68 −8402.62

1c 256�106 8540444 1823.83 −18068.8

1c 512�106 17081968 3647.99 −38656.7

1c 1024�106 34164699 7296.21 −82400.7

1c 2048�106 68329938 14592.59 −174902

aDFT-MD with 64 atoms �a uniform �E /Ne=−0.019 19 hartree
correction was added to account for missing DFT correlation energy
in the helium atom.
bPIMC with 32 atoms.
cDebye-Hückel limiting law.
dPIMC with 57 atoms.
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corrected by constant shift corresponding to the DFT error of the
isolated helium atom. In lower panel, PIMC results are compared
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instantaneous pressure as a function of electronic tempera-
ture. The fact that the nuclei are now classical rather than
being represented by paths in PIMC has a negligible effect
on the pressure for the temperatures under consideration. In
both methods, the instantaneous pressure is a well-defined
quantity derived from the virial theorem. In PIMC, the pres-
sure is derived directly from the kinetic ��K�� and potential
energies ��V��,

3PV = 2�K� + �V� , �5�

where V is the volume of the simulation cell. In DFT, one
uses the diagonal elements of the stress tensor.52 For a fixed
configuration of nuclei, the temperature dependence of the
instantaneous pressure arise from changes in the thermal
population of Kohn-Sham orbitals.

Figure 4 compares the instantaneous pressures from both
methods. At intermediate temperatures, there is a large
interval where both methods agree. DFT pressures appear
to be fairly accurate. For the level of accuracy needed
for this study, we could not detect any insufficiency re-
sulting from the ground-state exchange-correlation func-
tional nor from inaccurate thermal excitations resulting
from an underestimated band gap. However, the DFT even-
tually becomes prohibitively expensive at higher tempera-
ture. Some of the points at rs=2.4 required up to 100
bands per atom, and that is one reason why we only used a
single configuration. The other comes from path integrals.
PIMC simulations with 123 atoms, shown in Fig. 1, repre-
sent the limit one can study with currently available comput-
ers. To repeat the calculations at lower temperature where the

paths are longer, or to use the more expensive variational
nodes, would quickly exceed existing limits in processing
power.

Figure 4 also reveals inaccuracies in the PIMC computa-
tion that are caused by approximations in the trial density
matrix. PIMC with free-particle nodes predict pressures that
are too high when the electrons settle into the ground state
�T�40 000 K for rs=1.86 as shown in Fig. 2�. This effect
has already been reported for hydrogen.15 In the variational
density-matrix approach37 one allows the trial density matrix
to adjust to the positions of the nuclei, which corrects most
of the pressure error as can be seen in upper panel of Fig. 4.
However, the variational approach was derived to study
finite-temperature problems. It does not describe the elec-
tronic ground state as well as DFT.

For the purpose of constructing one EOS table for helium,
we use our DFT-MD results with Tel=Tion up to 80 000 K
for rs1.5 and results up to 125 000 K for rs=1.25 and 1.0.
For all higher T, we use PIMC simulations, which become
increasingly efficient at higher T because the length of the
paths is inversely proportional to temperature. The
temperature-pressure conditions of DFT-MD and PIMC
simulations are shown in Fig. 5.

It should noted that the discussed validity range of differ-
ent trial density matrices depends very much on the material
under consideration. The temperature where we switch from
PIMC to DFT-MD reflects the degree of thermal electronic
excitations as well as some dependence of the approxima-
tions made in each method. The density dependence of the
switching temperature would typically be estimated by com-
paring the temperature to the Fermi energy of an ideal gas of
electrons. However, to incorporate band-structure effects of
dense helium, we found it more appropriate to relate the
switching temperature to the DFT bandwidth. Bandwidth and
Fermi energy are identical in systems of noninteracting par-
ticles. For the purpose of this study, we found it appropriate
to switch from PIMC to DFT-MD for temperatures corre-
sponding to less than one-third of the helium bandwidth.

We performed PIMC simulations up to 1.28�108 K,
covering a large temperature interval of 2 orders of magni-
tude. At low temperature, the excess internal energies and
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pressures in Figs. 2, 3, and 6 are positive because of thermal
electronic excitations, but then change sign due to interac-
tions of ions and free electrons. At very high temperature
when helium is fully ionized, the system can be described by
the Debye plasma model.53 The Debye model is based on a
self-consistent solution of the Poisson equation for a system
of screened charges. The excess contribution to the free en-
ergy, internal energy, entropy per particle, and pressure are
given by

F

Np
=

�

12
,

E

Np
=

�

8
,

S

Np
=

�

24
, P =

�

24V
, �6�

� = − kBTV
�3

�
, �2 =

4�

kBT
�

i

Zi
2Ni

V
, �7�

where �=1 /rd is the inverse of Debye radius rd in a collec-
tion of Ni particles of charge Zi in volume V where Np
=�iNi. Figure 6 demonstrates very good agreement with the
Debye model at high temperature. The Debye model fails at
lower temperatures where it predicts unphysically low pres-
sures. Under these conditions the screening approximation
fails because there are too few particles in the Debye sphere.
The number of particles in the Debye sphere is proportional
to

�rd/rs�3  �Trs�3/2, �8�

which means that the Debye model becomes increasingly
accurate for high T and large rs. This is exactly what is
observed in Fig. 6. For higher densities, PIMC and Debye
predictions converge only at higher temperatures.

The size of the Debye sphere increases with temperature
and will eventually exceed the size of any simulation cell.
This occurs when the coupling of the particles becomes very
weak. With increasing temperature, the Coulomb energy de-
creases, while the kinetic energy increases linearly with T.
Determining the precise amount of the Coulomb energy be-
comes increasingly difficult due to finite-size effects. The
finite-size extrapolation only corrects for the leading term in

an expansion in 1 /N. In the weak-coupling limit, bigger and
bigger simulation cells are needed to perform the extrapola-
tion accurately. Instead of using simulations, it is much more
efficient to switch to analytical methods such as the hyper-
netted chain integral equations54 or the Debye model.

In conclusion, finite-size effects are the reason why the
PIMC energies do not agree perfectly with the Debye model
for the highest temperature shown in the lower panel of Fig.
3. The excess pressures reported in Fig. 6 are less sensitive to
finite-size errors than the internal energy because their vol-
ume dependence is relatively weak. We consequently use the
Debye EOS for the highest temperatures in our EOS given in
Table I. The pressure-temperature conditions for DFT-MD,
PIMC, and Debye results are summarized in Fig. 5.

IV. COMPARISON WITH FREE-ENERGY MODELS

Now we compare our first-principles EOS with chemical
free-energy models that were developed before first-
principles simulation data became available. Winisdoerffer
and Chabrier55 constructed a semianalytical model to study
stellar interiors that covers a wide density range including
metallization. Their EOS is only available in explicit form in
a small temperature interval, and a comparison with
DFT-MD simulation has already been reported.22 That is
why we focus on three other free-energy models: the first
derived by Saumon, Chabrier, and van Horn56 �SCvH�, an-
other by Chen et al.,57 and one model by Förster, Kahlbaum,
and Ebeling58 �FKE�.

The SCvH EOS for helium combined with their hydrogen
EOS �Ref. 59� has been used numerous times to model giant
planet interiors. Figure 7 compares the excess pressures for
three different temperatures. At a high temperature of 106 K,
which is important for stellar interiors, we found fairly good
agreement. The deviations between the SCvH model and
PIMC simulations are only about 4%.

At an intermediate temperature of 100 000 K, which ap-
proximately represents the regime of shock-wave experi-
ments, the agreement is less favorable. The SCvH EOS re-
ports pressures that are about 30% lower than those predicted
by PIMC. This is partly due to the fact that the SCvH model
follows the Debye model down to too low temperatures �Fig.
3�. Furthermore, the authors of the SCvH EOS relied on an
interpolation scheme between low- and high-temperature ex-
pressions to construct their helium EOS. At intermediate
temperatures the resulting EOS is not thermodynamically
consistent. The authors reported the region of inconsistency
in their paper56 and we added it to Fig. 18.

The last panel of Fig. 7 is relevant to the interiors of giant
planets with temperature on the order of 10 000 K. At low
density both EOSs agree well, but above 1.5 g cm−3 devia-
tion begins to increase steadily. At conditions comparable to
Jupiter’s interior, we find that the SCvH underestimates the
pressure by 30%. In a hydrogen-helium mixture of solar
composition, this translates into an error in the pressure of
about 4%. This is the reason why even the helium EOS is
important for estimating the size of Jupiter’s core, which is
expected to be only a small fraction of Jupiter’s total
mass.25,26,60
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Figure 8 compares the pressures with the free-energy
model derived by Chen et al.57 For the conditions of �
�2 g cm−3 and 4 eV�T�6 eV, the agreement with the
first-principles EOS reported here is reasonably good. The
deviations are on the order of 10%. However, one motivation
of the work of Chen et al.57 was the consideration of a
density- and temperature-dependent correction to the ioniza-
tion energy. Figure 8 shows that the deviation from the first-
principles EOS increases when this correction is applied.
Since the assumption of a lowering of the ionization energy

with density is very reasonable, one expects the reason for
the discrepancy to be caused by one of the many other ap-
proximations in this chemical model.

In 1992, FKE derived a chemical model for dense helium
that exhibits two first-order phase transitions associated with
the ionization steps He→He+→He2+ at high density and
low temperature. The authors were careful to point out that
there is no final proof for the existence of such plasma phase
transitions in helium but constructed their model so that pos-
sible consequences in astrophysics could be explored. Figure
9 compares the FKE model with the first-principles EOS
reported here. Both phase transitions were predicted to occur
in a temperature and density region where the first-principles
EOS is perfectly smooth and no evidence of a sharp ioniza-
tion transition can be found. Good agreement with the FKE
EOS is observed for low density and high temperature where
chemical models work well. Also at very high density out-
side the region of the predicted phase transitions, the agree-
ment is very reasonable.

V. PAIR-CORRELATION FUNCTIONS

In this section, we study the structure of the fluid by ana-
lyzing correlations between different types of particles.
Given the large amount of simulation results, we focus our
attention primarily on the temperature dependence and only
report results for one density of rs=1.86. The density depen-
dence of the pair-correlation functions, g�r�, was analyzed in
Ref. 48 for hydrogen and in Ref. 61 for helium.

Figure 10 shows how the nuclear pair-correlation func-
tions changes over a temperature interval that spans 7 orders
of magnitude. At low temperature, the g�r� shows the oscil-
latory behavior that is typical of a hard-sphere fluid. The
atomic interactions are governed by two tightly bound elec-
trons that lead to a strong repulsion at close range due to
Pauli exclusion. As long as the density is not too high, this
behavior is well described by the Aziz pair potential.20

As temperature increases, two effects change the pair-
correlation function. First, the increase in kinetic energy
leads to stronger collisions, and atoms approach each other
more. In this regard, helium does not exactly represent a
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hard-sphere fluid because the Aziz pair potential is not per-
fectly hard. Second, the increase in temperature also damps
the oscillation in the g�r�.

At 80 000 K, one finds perfect agreement between PIMC
and DFT-MD �upper panel of Fig. 10�. As the temperature is
increased further, changes in the nuclear g�r� functions are
dominated by thermal electronic excitations and the ioniza-
tion of atoms. One finds that the strong repulsion at low
temperature disappears gradually. As the Debye-Hückel limit
is approached, the fluid behaves like a correlated system of
screened Coulomb charges.

The peak in the electron-nucleus pair-correlation func-
tions in Fig. 11 illustrates that the electrons are bound to the

nuclei. At 40 000 K and below, the peak height is maximal.
At higher temperature, electrons get excited thermally and
eventually atoms become ionized. The peak height is conse-
quently reduced until, at very high temperature, the motion
of electrons and nuclei becomes uncorrelated.

The correlation of electrons with parallel spins is deter-
mined by Pauli exclusion and Coulomb repulsion but is also
influenced by the motion of the nuclei at low temperature.
Combination of all these effects causes the motion of same-
spin electrons to be negatively correlated at small distances.
This is typically referred to as the exchange-correlation hole.
At high temperatures, kinetic effects reduce the size of this
hole but g�r� always goes to zero for small r due to Pauli
exclusion �Fig. 12�.

Despite the Coulomb repulsion, the electrons with oppo-
site spins are positively correlated at low temperature, be-
cause two electrons with opposite spins are bound in a he-
lium atom. With increasing temperature, the peak in Fig. 13
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reduces in height because more and more electrons get ion-
ized. At 106 K, one finds the lowest values for g�r→0� be-
cause the electrons are anticorrelated due to the Coulomb
repulsion. If the temperature is increased further, kinetic ef-
fects dominate over the Coulomb repulsion and g�r→0�
again increases and will eventually approach 1 at high tem-
perature.

VI. ELECTRONIC DENSITY OF STATES

In this section, we illustrate the importance of thermal
electronic excitation by analyzing the electronic density of
states �DOS� derived from DFT-MD.22,24 Figure 14 compares
the total available DOSs as well as the thermally occupied
fractions for rs=1.0, 1.86, and 2.2 and T=80 000, 20 000,
and 5000 K. The results were obtained by averaging over ten

snapshots equally spaced from corresponding DFT-MD tra-
jectories. The eigenvalues of each snapshot were shifted so
that the Fermi energies align at zero. A 4�4�4 k-point grid
was used for rs=1.0 and 1.86, and a 2�2�2 grid for rs

=2.2. To reduce the remaining noise level, a Gaussian smear-
ing of 1 eV was applied to the rs=2.2 and 1.86 results; 2 eV
was used for rs=1.0. The curves are normalized such that the
occupied DOS integrates to 1.

The electronic DOSs at rs=2.2 and 1.86 are qualitatively
similar. The occupied DOS has one large peak at approxi-
mately −10 eV, followed by a wide gap at the Fermi energy,
followed by a continuous spectrum of conducting states. At
5000 K, thermal electronic excitations are not important. At
20 000 K, a small but non-negligible fraction of the elec-
trons are excited across the gap, which is illustrated in the
inset of the middle panel of Fig. 14. These excitations in-
crease the pressure shown in Fig. 2 and increase the com-
pression ratio in shock-wave experiments that will be dis-
cussed later. At 80 000 K the system still exhibits a gap but
a large fraction of the electrons now occupy excited states.
The increase in temperature also leads to stronger collisions
of the atoms, which broadens the peak of the unoccupied
DOS and spreads the levels in the unoccupied DOS further,
which reduces the magnitude DOS.

At rs=1.0 the character of the DOS is different from
lower densities. At 5000 K, the system still exhibits a gap,
but it is much narrower. Occupied and unoccupied states
are piled up around it. The bandwidth of the occupied states
has increased substantially.24 If temperature is increased
at this density, the band gap closes as a result of the
collision-induced broadening. Fluid helium assumes a metal-
lic state that has been studied in more detail in Refs. 22 and
24.

VII. ENTROPY CALCULATIONS

Convection in the interior of planets requires that the
temperature-pressure profile is adiabatic. In consequence, the
planetary interior is fully determined by the conditions on the
surface and the EOS. This makes the calculation of adiabats
important. However, neither Monte Carlo nor molecular dy-
namics methods can directly compute entropies because both
techniques save orders of magnitude in computer time by
generating only a representative sample of configurations.
Without this gain in efficiency, many-body simulations
would be impossible. In consequence, entropies that are
measures of the total available phase space are not accessible
directly.

Typically one derives the entropy by thermodynamic in-
tegration from a known reference state. However, for plan-
etary interiors, the absolute value of the entropy is not
important as long as one is able to construct �T , P� curves
of constant entropy. This can be done using the pressure
and the internal energy from first-principles simulations at
different �T ,V� conditions. Using Maxwell’s relations, one
finds
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FIG. 14. �Color online� The three panels show the electronic
DOSs at the densities rs=1.0, 1.86, and 2.2. The open and filled
circles respectively show the densities of all available states and the
thermally occupied fraction at 80 000 K. The diamonds and the
thick lines without symbols show total DOSs at 20 000 and 5000 K,
respectively. The occupied DOS at 20 000 K �thin solid line� is
only shown for rs=1.0 and in the inset for rs=1.86. The eigenvalues
from each configuration were shifted so that all Fermi energies
�vertical dashed line� align at zero.
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By solving this ordinary differential equation, �V ,T� adiabats
can be constructed as long as a sufficiently dense mesh of
high-quality EOS points is available to make the required
interpolation and differentiation of E and P with respect to
temperature satisfactorily accurate.

One drawback of formula �9� is that it is not necessarily
thermodynamically consistent if pressures and internal ener-
gies are interpolated separately. This is the primary reason
why we developed the following method to fit the free en-
ergy instead. Pressure and internal energy are related to the
free energy F�V ,T� by

P = − ��F

�V
�

T

and E = F − T��F

�T
�

V

. �10�

Different EOS fits for fluids have been proposed in the
literature.47,62 Thermodynamic consistency was not a priority
in either case. Both papers relied on specific functional forms
that were carefully adjusted to the material under consider-
ation. Although such a fit of specific form could probably
have also been constructed for the presented helium EOS
data, we wanted to have an approach that is not just appli-
cable to one material. Therefore, we decided to represent the
free energy as a bicubic spline function with temperature and
density as parameters. This spline function can accurately
represent our helium EOS data and can easily be adapted to
fit other materials. Cubic splines are twice continuously dif-
ferentiable, which means that the derived pressures and en-
ergies are once continuously differentiable with respect to V
and T. This is sufficient for this study. If additional thermo-
dynamic functions that require higher-order derivatives of
the free energy, such as sound speeds, need to be fitted also,
then higher-order splines can accommodate that.

We start the free-energy interpolation by constructing a
series of one-dimensional spline functions Fn�T� for different
densities. The choice of knots Ti is arbitrary. Their location
should be correlated with the complexity of the EOS as well
as the distribution of EOS data points. In our helium ex-
ample, we used a logarithmic grid in temperature with about
half as many knots as data points. The set of free-energy
values on the knots, F�Ti�, represents the majority of the set
of fit parameters. In addition, one may also include the first
derivatives of the splines,

�Fn

�T 	V, at the lowest and highest
temperatures, which represent the entropy. Alternatively, one
could derive those derivatives by other means and then keep
them fixed during the fitting procedure.

To compute the free energy at a specific density n� and
temperature T �, we first evaluate all splines Fn�T ��and then
construct a secondary spline at constant temperature as a
function of density, FT��n�. Its first derivate is related to the
pressure. Again, the derivative at the interval boundaries can
be either fixed or adjusted during the fitting procedure. We

adjust them by using an additional spline �F
�n 	T�T� at the low-

est and highest densities, which then get adjusted in the fit-
ting procedure.

We begin the fitting procedure with an initial guess for the
free-energy function derived from Eq. �9�. Then we employ
conjugate gradient methods63 to optimize the whole set of
fitting parameters. Minimizing the sum of the squared rela-
tive deviations in pressure and internal energy has been
found to work best. �Just for the derivation of the relative
deviation in energy, the zero of energy has been shifted to the
value of the isolated helium atom.�

All fits tend to introduce wiggles if too many free param-
eters are included. We control wiggles by adjusting the num-
ber of knots in density and temperature but we also include
penalty in the form

� =� d�� �3F

�n3�2

, �11�

to favor fits with smaller 	� 2P /�n2	. Finally we change the
density argument in the spline interpolation from FT��� to
FT(log���). This improves the fit in the high-temperature
limit where the free energy is dominated by the ideal-gas
term that has logarithmic dependence on density.

The presented free-energy fit is thermodynamically con-
sistent by construction. It allows us to accurately represent
the entire data set of P and E values. Without additional
information, the free energy can be determined up to a term
T�S, which is sufficient to compute adiabats. To determine
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FIG. 15. �Color online� Comparison in temperature-density
space of adiabats from first-principles simulations �this work� and
the SCvH EOS model.
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the absolute value of the entropy, one needs an anchor point,
for which the entropy was derived by different means.

Figure 15 compares different adiabats derived from our
first-principles EOS with predictions from the SCvH EOS
model. Beginning from a joint starting point of rs=2.4 and a
selection of seven different temperatures of 3000, 5000,
10 000, 50 000, 100 000, 500 000, and 106 K, we con-
structed the adiabats for both models for the density interval
under consideration. The upper panel of Fig. 15 demonstrates
good agreement between both methods at low densities of up
to about 1 g cm−3. For higher densities, one finds deviations
of up to 20% in the predicted temperatures on the adiabats. A
higher temperature, the agreement gets substantially better,
which is illustrated in the lower panel of Fig. 15. The ob-
served deviations are similar to pressure differences shown
in Fig. 7.

For applications in the field of planetary science, we also
show the adiabats in �T , P� space in Fig. 16. The deviations
are comparable in magnitude but appear smaller on a loga-
rithmic scale.

VIII. SHOCK-WAVE EXPERIMENTS

Dynamic shock compression experiments are the pre-
ferred laboratory experiments to probe the properties of ma-
terials at high pressure and temperature. Lasers,21 magnetic
fields,11 and explosives64 have recently been used to generate
shock waves that reached megabar pressures. Under shock
compression, the initial state of a material characterized by
internal energy, pressure, and volume �E0 , P0 ,V0� changes to
the final state described by �E , P ,V�. The conservation of

mass, momentum, and energy yields the Hugoniot
condition,65

H = �E − E0� +
1

2
�P + P0��V − V0� = 0. �12�

Different shock velocities lead to a collection of final states
that are described by a Hugoniot curve. Using Eq. �12�,
this curve can easily be calculated for a given EOS where
one most often may assume P0� P. V0=32.4 cm3 /mol ��0
=0.1235 g cm−3� is taken from experiment.19 For E0, one
takes the energy of an isolated helium atom, which must be
calculated consistently with the final internal energy E. An
initial static precompression that changes V0 will also affect
E0 and P0 but the corrections are negligible as long as the
amount of initial compression work is small compared to the
energy that is deposited dynamically. Assuming dE0=dP0
=0, the total differential of H reads

dH = dE +
P

2
dV −

P

2
dV0 +

1

2
�V − V0�dP . �13�

The point of maximum compression, �max=V0 /V, along the
Hugoniot curve can be derived by setting dH=dV=dV0=0.
The resulting condition can be expressed in terms of the
Grüneisen parameter, ��V �P

�E 	V=2 / ��max−1�.
Now we will determine how the maximum compression

ratio �max changes if the sample is precompressed statically.
Keeping the final shock pressure constant, the compression
ratio changes as function of the initial sample volume V0,

� ��

�V0
�

P

=
1

V
−

V0

V2� �V

�V0
�

P

. �14�

Setting dH=dP=0 in Eq. �13�, one finds

� �V0

�V
�

P

=
2

P
� �E

�V
�

P

+ 1 �
2

�
+ 1. �15�

Inserting this result into Eq. �14� yields

V� ��max

�V0
�

P

=
2�� − ��
��2 + ��

. �16�

Since the parameters � and � are both positive, the relation
	
��max

�V0
	P�0 is equivalent to the relation ���, which is again

equivalent to

1 �
�

P
� �P

��
�

E

. �17�

If this condition is fulfilled for a particular EOS, then the
maximum shock compression ratio will decrease if the
sample is precompressed statically, which reduces V0. We
have computed the isoenergetic compressibility for our first-
principles EOSs for helium and hydrogen and verified that
this condition is satisfied for both materials �Fig. 17�. It is
also fulfilled for an ideal plasma model because the maxi-
mum compression ratio is determined by the balance of ex-
citations of internal degrees of freedom and interaction
effects.20 Although all interactions are neglected, an ideal
model correctly represents the fact that excited states are
suppressed at high density because of the reduced entropy.
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FIG. 16. �Color online� Comparison in temperature-pressure
space of the adiabats shown in Fig. 15.
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The diminished importance of excitations reduces the maxi-
mum compression ratio to values closer to 4, which is the
expected result for noninteracting systems without internal
degrees of freedom.

Recent laser shock-wave experiments21 reached pressures
of 2 megabar in fluid helium for the first time. The sample
was precompressed statically in a modified diamond anvil
cell before the shock was launched. The static precompres-
sion is an important development that enables one to reach
higher densities and still allows one to directly determine the
EOS. Reaching higher densities is important for planetary
interiors because shock Hugoniot curves rise faster than adia-
bats in a P-T diagram like that shown in Fig. 18. As a result,
a large part of Jupiter’s adiabat remains inaccessible unless
one increases the starting density by precompression. The
precompression and relation of planetary interiors were stud-
ied theoretically in Ref. 66. It was demonstrated that precom-
pression of up to 60 GPa would be needed to characterize
50% of Jupiter’s envelope. The challenge here is to reach
high enough densities because a single shock wave com-
presses the material only 5.25-fold or less �Fig. 17�.

The measurements of Eggert et al.21 confirmed two of our
theoretical predictions.20 They showed that helium has a

shock compression ratio substantially larger than 4 due to
thermal electronic excitations and that the compression ratio
would decrease with increasing precompression �Fig. 17�.

Figure 19 shows a detailed comparison between experi-
ments and our first-principles simulations. The shock mea-
surements without precompression show a higher compres-
sion than predicted from first principles. The deviations are
outside the experimental and theoretical error bars. However,
this discrepancy goes away with increasing precompression.
The shocks with 3.4-fold precompression are in good agree-
ment with first-principles predictions. We have no explana-
tion for this trend at present. More experimental and theoret-
ical work will be needed to reveal the reason for this
discrepancy. Using our first-principles EOS, we converted
the reported P-� measurements to temperature �see Fig. 18�.
Since the resulting shock temperatures span the interval of
24000–63000 K, the comparison with our EOS rests on
DFT-MD.

In this temperature interval, the SCvH EOS predicts sig-
nificantly lower pressures than our first-principles EOS �see
Fig. 7�. Consequently, this model predicts a higher compress-
ibility for shock Hugoniot curves with and without precom-
pression. As a result, the SCvH model agrees better than our
first-principles calculations with those shock measurements
that did not use any precompression. However, SCvH model
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is not in agreement with shock measurements that used pre-
compressions more than twofold.21 For those, it predicts a
compressibility that is higher than measured.

Furthermore, it turns out that all measurements fall into
the region where thermodynamic inconsistencies in the
SCvH EOS model are large �see Fig. 18� and the model is
expected to be less reliable than elsewhere. A different
chemical model based on an expansion of the activity67 pre-
dicts maximum compression ratios between 5.6 and 6.2 to
occur at about 100 GPa, which is in good agreement with
shock measurements without precompression.

IX. CONCLUSIONS

This work combined path integral Monte Carlo and den-
sity functional molecular dynamics simulations to derive one
coherent equation of state for fluid helium at high pressure
and temperature. Helium is a comparatively simple material
since it does not form chemical bonds nor has core electrons,
but our approach of combining two simulation techniques
can be generalized to study more complex materials at ex-
treme conditions. Certainly the presented approach to fitting
the free energy and to deriving adiabats works for any set of
EOS data points derived from first-principles simulations.

For the future, one might consider replacing DFT-MD
with coupled ion-electron Monte Carlo.68 However this is
strictly a ground-state method and one would still need to
find a way to include thermal electronic excitations.
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APPENDIX: FREE-ENERGY SPLINE INTERPOLATION

We constructed the following two-dimensional �2D�
spline interpolation of the free energy in order to reproduce
the internal energy and pressures from Table I. We use

TABLE II. Reduced coordinates of the DFT-MD configuration
with 57 atoms that was used to report the rs=1.86 results for the
instantaneous pressure in Fig. 4. The cell size is L=14.5382 a.u.

x /L y /L z /L

0.749029 0.334272 0.723992

0.636183 0.917961 0.531890

0.509121 0.642554 0.328933

0.273631 0.845722 0.363632

0.053785 0.837401 0.054990

0.250609 0.517490 0.740851

0.107008 0.407958 0.463387

0.988548 0.830572 0.241931

0.244399 0.482412 0.399190

0.924284 0.678572 0.470508

0.780287 0.033015 0.620919

0.774645 0.083064 0.349744

0.293881 0.081041 0.053630

0.493690 0.930407 0.343378

0.648043 0.965342 0.702852

0.504966 0.639074 0.084498

0.716468 0.854022 0.986517

0.099368 0.291429 0.740170

0.252564 0.696499 0.576596

0.613177 0.259980 0.238984

0.526564 0.816547 0.598836

0.507514 0.904602 0.268688

0.614731 0.263859 0.402947

0.115992 0.498747 0.676389

0.778767 0.981750 0.935757

0.334815 0.183086 0.275601

0.975542 0.456665 0.257836

0.737370 0.699890 0.544111

0.558513 0.066648 0.194491

0.359050 0.631169 0.090795

0.500277 0.715818 0.420142

0.192192 0.222632 0.042651

0.070837 0.830223 0.693497

0.138489 0.091713 0.097622

0.953625 0.430789 0.067921

0.023708 0.960709 0.487179

0.811738 0.062550 0.902069

0.693258 0.647174 0.360832

0.181701 0.886709 0.333868

0.859185 0.932541 0.252564

0.903457 0.888628 0.124621

0.220134 0.760599 0.688370

0.585411 0.439278 0.167284

0.219455 0.957094 0.895428

0.906610 0.508304 0.938057

0.385839 0.307391 0.681601

0.475139 0.160612 0.598743

TABLE II. �Continued.�

x /L y /L z /L

0.788211 0.564812 0.486616

0.296858 0.344416 0.229757

0.429733 0.712523 0.742929

0.685066 0.562001 0.926251

0.432246 0.210193 0.939664

0.424152 0.141821 0.676522

0.208696 0.768371 0.292528

0.487257 0.590889 0.227333

0.577884 0.835181 0.876629

0.177496 0.781162 0.853225
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atomic units of hartrees and Bohr radii. For each density of
rs= �2.4,2.0,1.6,1.2,0.8�, we construct a cubic spline Fn�T�.
Table III lists 16 knot points (Ti ,F�Ti�) for each density. In
addition, the first derivates �F

�T are specified at the lowest and
highest temperatures. This is sufficient to construct a cubic
spline function F�T�.63

In a similar fashion, we derive a spline function that con-
tains that free-energy derivative with respect to density,
�F
�n �T�, at the lowest and highest densities, rs=2.4 and 0.8,
respectively. n is the density of the electrons, n=Ne /V. Those

knot points as well as the T derivatives are included in Table
III also.

In order to obtain the free energy for a particular density
and temperature �n� ,T ��, we proceed as follows. First we
evaluate the spline functions F�T �� and �F

�n �T �� at tempera-
ture T �. Using these five knots points and density deriva-
tives, we construct a spline function F(log�n�). We use log�n�
as argument because it better represents the high-temperature
limit of weak interactions. Note that the constructed splines
for the density derivate contain �F

�n and not �F
� log�n� . Then

TABLE III. Knot points for free-energy spline interpolation.

T �a.u.� f�rs=2.4,T� f�rs=2.0,T� f�rs=1.6,T� f�rs=1.2,T� f�rs=0.8,T�

0.001583407607 −1.433567121 −1.431135811 −1.422237604 −1.377317056 −1.089747214

0.004369348882 −1.406243368 −1.402248169 −1.390358674 −1.34121764 −1.049220122

0.01205704051 −1.338444742 −1.330719999 −1.313137294 −1.255091313 −0.9491949603

0.03327091284 −1.169814789 −1.154154406 −1.125146478 −1.047701304 −0.7135001905

0.09180973061 −0.7578793569 −0.7214892496 −0.6653645937 −0.5501514183 −0.1583196636

0.2533452171 0.1213432393 0.2279596473 0.3697481593 0.5961317377 1.145222958

0.6990958211 1.448161918 1.849742465 2.331720062 2.967152398 4.011622282

1.929126481 1.650153009 3.082886945 4.795803813 6.956651264 9.947352284

5.323346054 −6.480107758 −2.223161966 2.964697691 9.579180258 18.74636894

14.6895569 −50.37972679 −38.41515844 −23.79211621 −4.992619324 21.39894481

40.53523473 −231.4313924 −198.2806566 −157.6765535 −105.3657984 −31.61456362

111.8553314 −893.7314032 −802.1449141 −689.7861073 −544.9061891 −340.7935545

308.660237 −3172.519712 −2918.919455 −2608.696846 −2207.77895 −1644.63782

851.7353686 −10693.37579 −9996.590015 −9137.681211 −8032.176108 −6477.239292

2350.329104 −34893.6373 −32971.41578 −30600.55572 −27552.36594 −23259.81241

6485.637557 −111050.5942 −105746.9466 −99203.62441 −90788.1102 −78945.99564

f��rs ,T1� 10.43646526 10.93007841 12.42958105 14.04097874 13.75171132

f��rs ,TN� −19.3620206 −18.54727965 −17.53417624 −16.23883073 −14.41224513

T �a.u� �f
�n �rs=2.4,T� �f

�n �rs=0.8,T�

0.001583407607 0.1605721538 0.9460950728

0.004369348882 0.2923651353 0.9625433841

0.01205704051 0.6458549976 0.9782855175

0.03327091284 1.463747273 1.029890765

0.09180973061 3.574255133 1.142591093

0.2533452171 10.98479122 1.409424435

0.6990958211 43.27443042 2.089943658

1.929126481 153.211445 5.309130852

5.323346054 450.4159975 15.9843674

14.6895569 1263.720981 46.33079487

40.53523473 3502.359609 129.8984992

111.8553314 9679.619949 359.8256334

308.660237 26719.83852 992.5003633

851.7353686 73736.1465 2741.461026

2350.329104 203474.5198 7568.332998

6485.637557 561480.8894 20879.15481

f��rs ,T1� 47.35562925 6.453623893

f��rs ,TN� 86.57538487 3.218499127
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F(log�n�) is evaluated at the density of interest, n�. Finally
we add the term, −T�S=−�13.790 283 6 Ha��T, which
brings the entropy in agreement with our Debye-Hückel ref-
erence point at high temperature for rs=1.86. This procedure

yields the free energy F�n� ,T �� in hartrees per electron.
Other thermodynamic variables including pressure, internal
energy, entropy, and Gibbs free energy can be obtained by
differentiation.
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